ABSTRACT: Nanocomposite gels formed by mixing nanoparticles and polymers offer a limitless creative space for the design of functional advanced materials with a broad range of applications in materials and biological sciences. Here, we focus on aqueous dispersions of hydrophobic colloidal soot particles, namely, carbon black (CB) dispersed with a sodium salt of carboxymethylcellulose (CMC), a food additive known as cellulose gum that bears hydrophobic groups, which are liable to bind physically to CB particles. Varying the relative content of CB particles and cellulose gum allows us to explore a rich phase diagram that includes a gel phase observed for a large enough CB content. We investigate this hydrogel using rheometry and electrochemical impedance spectroscopy. CB–CMC hydrogels display two radically different types of mechanical behaviors that are separated by a critical CMC-to-CB mass ratio r_c. For $r < r_c$, i.e., for low CMC concentration, the gel is electrically conductive and shows a glassy-like viscoelastic spectrum, pointing to a microstructure composed of a percolated network of CB particles decorated by CMC. In contrast, gels with a CMC concentration larger than r_c are nonconductive, indicating that the CB particles are dispersed in the cellulose gum matrix as isolated clusters, and act as physical cross-linkers of the CMC network, hence providing mechanical rigidity but limited conductivity enhancement to the composite. Moreover, in the $r > r_c$ concentration range, CB–CMC gels display a power-law viscoelastic spectrum that depends strongly on the CMC concentration. These relaxation spectra can be rescaled onto a master curve, which exhibits a power-law scaling in the high-frequency limit, with an exponent that follows Zimm theory, showing that CMC plays a key role in the gel viscoelastic properties for $r > r_c$. Our results offer an extensive experimental characterization of CB–CMC dispersions that will be useful for designing soft nanocomposite gels based on hydrophobic interactions.

INTRODUCTION

Carbon black (CB) particles are colloidal soot particles produced from the incomplete combustion of fossil fuels. These textured particles of typical size 0.5 μm are made of permanently fused “primary” nanoparticles of diameter 20–40 nm.1 Cheap and industrially produced at large scale, they are broadly employed for their mechanical strength, high surface area, and their electrical conductive properties, even at low volume fractions. Applications include pigments for ink,2,3 reinforcing fillers in tires and other rubber products,4,5 electrically conductive admixture in cement,6 conductive materials for supercapacitors,7 biosensors,8,9 and electrodes for semisolid flow batteries.10–15 Being much cheaper than carbon nanotubes or graphene, CB particles appear promising for applications in energy storage,16 including flow electrodes for which the ultimate goal is to maximize the conductivity, while minimizing the shear viscosity of the material. In that framework, flow batteries based on aqueous dispersion of carbon black nanoparticles have recently received an upsurge of interest.12,17–20

Due to their hydrophobic properties, CB particles are easily dispersed in aprotic solvents such as hydrocarbons,21 where...
particles interact only via van der Waals forces, that correspond to a short-range attractive potential, whose depth is typically about 30 k_BT in light mineral oil. As a result, CB dispersions organize into space-spanning networks even at low volume fractions and behave as soft gels characterized by a yield stress at rest and a highly time-dependent mechanical response under external shear, which involves delayed yielding, heterogeneous flows, and shear-induced memory effects.

In contrast, untreated CB particles are difficult to disperse in water where they tend to flocculate rapidly, before creaming or sedimenting. Stabilizing aqueous dispersions of CB particles requires keeping the particles apart, either by electrostatic repulsion or by steric hindrance. In practice, this is achieved in three different ways: (i) surface oxidation yielding acidic functional groups, (ii) functionalization of CB particles with polymers, i.e., polymer grafting chemically onto their surface or CB encapsulation through emulsion polymerization, and (iii) physical adsorption of a polymer dispersant. The latter method allows CB mass fractions in water to be as large as 20%, and the dispersants investigated include polyelectrolytes, ionic surfactants such as sulfonate surfactants, sulfonyl acids, cetimethylammonium bromide (CTAB), and chloride (CTAC), and nonionic surfactants such as silicone surfactants or block copolymers surfactants, as well as biopolymers, such as Arabic gum or polysaccharides. From a structural point of view, dispersants adsorb as monolayers onto the surface of CB particles due to hydrophobic interactions, whose strength depends on the monolayers onto the surface of CB particles due to hydrophobic interactions, whose strength depends on the molecular structure and weight of the dispersant. Irrespective of the nature of the dispersant, such stabilized CB dispersions behave as shear-thinning fluids.

Solution properties, yielding larger viscosities and eventually leading to a sol–gel transition for large enough polymer concentrations.

In the present work, we take advantage of such hydrophobic regions on CMC molecules to use this polymer as a dispersant of CB particles. Varying the contents of CB and CMC, we unravel a rich phase diagram, which we characterize by rheometry and electrochemical impedance spectroscopy. The outline of the manuscript is as follows: after presenting the materials and methods, we introduce the phase diagram and focus specifically on the hydrogel phase. We then discuss the impact of the CMC concentration on the gel elastic properties before turning to the role of the CB content. Our results allow us to identify two different types of hydrogels, whose microstructures are sketched and extensively discussed before concluding.

MATERIALS AND METHODS

Samples are prepared by first dissolving sodium carboxymethyl cellulose (Sigma-Aldrich, M_w = 250 kg mol^-1 and DS = 0.9) in deionized water. Stock solutions up to 5% wt. are prepared and stirred at room temperature for 48 h until homogeneous, before adding the CB particles (VXC72R, Cabot). Samples are placed in a sonicator bath for two rounds of 90 min separated by a period of 24 h under mechanical stirring. The samples are finally left at rest for another 24 h before being tested. The CMC solution is considered to be the solvent, while CB particles are the dispersed phase; hence, we define the CMC weight concentration as x_{CMC} = m_{CMC}/(m_{CMC} + m_{water}), where m_{CB}, m_{CMC}, and m_{water} are, respectively, the mass of CB, CMC, and water in the sample.

Rheological measurements are performed with a stress-controlled rheometer (MCR 302, Anton Paar) equipped with a cone-and-plate geometry (angle 2°, radius 20 mm). For very soft samples with elastic moduli lower than 10 Pa, we use a larger cone-and-plate geometry (angle 2°, radius 25 mm), whereas for the stiffest samples with elastic moduli larger than 10 kPa, we use a parallel-plate geometry (gap 1 mm, radius 20 mm). For all the geometries used, the stator is smooth and the rotor is sandblasted. Finally, to ensure a reproducible initial state following the loading step into the shear cell of the rheometer, each sample is shear-rejuvenated at \(\gamma = 500 \, s^{-1} \) (or \(\gamma = 50 \, s^{-1} \) for samples with elastic moduli larger than 10 kPa), before being left at rest for 1200 s, during which we monitor the linear viscoelastic properties through small amplitude oscillatory shear (\(\gamma_0 = 0.03–0.3\% \) and \(f = 1 \, Hz \); see Figure S1).

Electrical measurements are performed in AC mode in a cylindrical cell made of Teflon (thickness of about 1 mm and surface of about 0.5 cm^2). The inner sides are made of metal and act as electrodes that are connected to a multifrequency impedance analyzer (SP-300 Potentiostat, Biologic). A decreasing ramp of frequency allows one to determine the frequency dependence of the sample impedance \(Z^*(f) = Z' - iZ'' \); the real and imaginary parts, Z’ and Z”, respectively, are shown in Figure 1 for a sample containing c_{CMC} = 0.15% wt. and x_{CB} = 8% wt. The resistance R' shows a decreasing step shape, while the reactance Z'' displays a bell-shaped curve. Overall, the complex impedance measured experimentally can be well fitted by

\[
Z^*(f) = \frac{1 + R_{\infty} Q(2\pi f)^n}{1 + (R_{CB} + R_{\infty}) Q(2\pi f)^n}
\]

which corresponds to the simple circuit sketched as an inset in Figure 1 and classically reported in the literature for describing the electrical response of CB or carbon nanotube dispersions. More precisely, the circuit comprises a resistance R_{CB} modeling the percolated network of CB particles, in parallel with two elements, namely, a resistance R_{\infty} accounting for the ionic conductivity of the minor fraction of CB particles and a reactance R_{Q} modeling the electrochemical double layers at the interface between the CB particles and the aqueous phase.
Results and Discussion

Phase Diagram. We first discuss qualitatively the outcome of dispersing carbon black (CB) nanoparticles in a solution of carboxymethylcellulose (CMC). In practice, we observe four different phases that are summarized in the phase diagram reported in Figure 2. We emphasize that such a phase diagram of the polymer/carbon mixture is a nonequilibrium state diagram whose boundaries depend on the details of the sample preparation. For low CB and CMC concentration, the aqueous dispersion is unstable and the CB particles sediment within about 20 min [Figure 2b]. On the one hand, increasing the CMC concentration beyond about 107% allows stabilization of the CB particles, yielding a viscoelastic liquid being stable over weeks [Figure 2c]. On the other hand, increasing the content in CB particles confers gel-like properties upon the samples; i.e., the sample shows a solid-like behavior at rest and for small deformations, while it flows for large enough stresses [Figure 2d]. Finally, for CB content larger than about 10% wt., the sample behaves as a strongly elastic paste, with a fragile behavior to the touch [Figure 2e].

In the present work, we focus on the hydrogel phase, which is observed over the entire range of CMC concentrations explored and for CB content ranging between a few % wt. and about 15% wt. In order to quantify the gel rheological properties, we measure its linear viscoelastic properties through small amplitude oscillatory shear, as detailed above. The ratio of the viscous to the elastic modulus measured at $\omega = 2\pi$ rad·s$^{-1}$, i.e., $G'/G'' = \tan \delta$, also known as the loss factor, is reported in Figure 3 (see Figures S4 and S5 for a similar representation of G' and G'', respectively). Such a phase diagram built upon the loss factor highlights two different regions, which correspond to samples that mainly differ by their CMC concentration. Samples with a lower CMC concentration display relatively less viscous dissipation ($\tan \delta \lesssim 0.1$) than samples with the highest CMC concentration ($\tan \delta \gtrsim 0.1$). This observation suggests that CMC–CB hydrogels come in two different flavors, depending on the polymer content. We quantify these qualitative results by studying the scaling of the viscoelastic and electrical properties of the samples, with respect to the CMC concentration and the CB content.

Impact of CMC Concentration on the Gel Elastic Properties. In this section, we first discuss the impact of the CMC concentration at fixed CB content, which corresponds to
a vertical cut in the phase diagram reported in Figure 2a. The dependence of G' with the CMC concentration is pictured in Figure 4a, as a function of the mass ratio x_{CB}.

Figure 3. Hydrogel region of the phase diagram of aqueous CMC–CB dispersions as a function of the CB solid weight fraction x_{CB} and the CMC weight fraction c_{CMC}. Color levels code for the loss factor $\tan \delta = G' / G''$ of the gel phase determined by small amplitude oscillatory shear at $\omega = 2\pi$ rad s$^{-1}$. The red line corresponds to $r = r_c$. The green curve corresponds to $r = r_0$ and separates two regions in the gel phase with samples of different microstructures.

Figure 4. Evidence for a transition between two rheological and electrical regimes. (a) Normalized elastic modulus G'/G'_p measured at $\omega = 2\pi$ rad s$^{-1}$ vs mass ratio $r = m_{CMC}/m_{CB}$. Each data point has been measured 1200 s after a shear rejuvenation step (see “Materials and Methods”). Color encodes the CB content x_{CB}: 6% (light blue ⋄), 8% (medium blue ⋄), and 10% (dark blue ⋄). The plateau elastic modulus G'_p is defined as the average value of G' over the range $10^{-4} \leq r \leq 10^{-2}$. The red curve is the best power-law fit of G'/G'_p vs $r_c - r$ with $r_c = 0.037$, yielding an exponent 3.8 ± 0.5. Inset: G'_p vs x_{CB}. The red line is the best power-law fit of the data, yielding an exponent 8.2 ± 0.6. Inset: G'_p vs x_{CB}. (b) Electrical conductivity σ_{CB} of the CMC–CB dispersions vs mass ratio $r = m_{CMC}/m_{CB}$ with $x_{CB} = 8\%$ wt. The red curve is the best power-law fit of σ_{CB} vs $(r_c - r)$ with $r_c = 0.037$, yielding an exponent 3.2 ± 0.8. (See inset for a logarithmic plot).

$r = m_{CMC}/m_{CB} = c_{CMC}(1 - x_{CB})/x_{CB}^*$, which represents the effective number of CMC molecules per CB particles. At low CMC concentrations, we observe that the elastic modulus G' is constant $G' = G'_p$ independent of r over about two decades of CMC concentration, i.e., $10^{-4} \leq r \leq 10^{-2}$. For $r > 10^2$, the elastic modulus drops abruptly by about 3 orders of magnitude for increasing CMC concentration within a narrow range of r values, reaching a minimum value at $r = r_c \approx 0.037$. Finally, for $r > r_c$, increasing the CMC concentration translates into an increase of G', which scales roughly as a power-law function of r. This evolution of G' over the whole range of r is robust, as evidenced by the data reported in Figure 4a for three different CB contents, namely, $x_{CB} = 6\%$, 8\%, and 10\%, as emphasized in Figure S6.

These observations unambiguously confirm the trends determined thanks to the loss factor and show that the linear elastic properties of the CMC–CB hydrogels have two distinct origins depending on the relative content in CB and CMC. For $r < r_c$, the gel elastic properties are set by the amount of CB particles [see inset in Figure 4a] and independent of the CMC concentration, whereas for $r > r_c$, the elastic modulus is an increasing function of the CMC concentration, irrespective of the CB content. Moreover, these results suggest that the gel microstructure is drastically different on each side of r_c. To get more insights on the hydrogel microstructure, we build upon the fact that the CB particles are electrically conductive.

We have performed AC electrical measurements on a series of gels with a fixed CB content ($x_{CB} = 8\%$ wt.) and over a broad range of CMC concentrations. For each gel, we determine its electrical conductivity σ_{CB} associated with the possible percolated network of CB particles (see Materials and Methods for details about electrical measurements). The data are reported in Figure 4b. We observe that the electrical conductivity shows a similar dependence upon the CMC concentration to that of the elastic modulus. For $r < r_c$, the electric conductivity is high, i.e., $\sigma_{CB} \approx 10$ mS cm$^{-1}$, independent of the CMC concentration, whereas for $r > r_c$, the electric conductivity drops by 3 orders of magnitude down to a negligible value following a power law of $r_c - r$, with an exponent 3.2 [see inset in Figure 4b].

These results demonstrate that CB particles form a space-spanning network for $r < r_c$, turning the sample into an electrically conductive material. In contrast, the negligible electrical conductivity ($\sigma_{CB} \lesssim 10^{-3}$ mS cm$^{-1}$) observed for $r > r_c$ points toward a microstructure in which the CB particles are isolated as individual particles or clusters. We can further conclude that these isolated particles or clusters serve as a physical cross-linker, which provide solid-like properties to the CMC matrix, for CMC dispersions alone behave as viscoelastic liquids regardless of the CMC concentration.74,75 These two different microstructures are sketched in Figure 5. Finally, note that the transition from a gel network in which the elasticity is set by the CB particles alone to a gel network in which the elasticity results from the polymer network physically cross-linked by CB particles occurs over a narrow range of r values. The value $r_c \approx 0.037$ corresponds to the critical amount of polymer required to decorate all the CB particles, such that further addition of CMC only viscousifies the solvent. Within this framework, the evolution of the sample microstructure from $r < r_c$ to $r > r_c$ is akin to a depercolation transition, as reported in silica–styrene–butadiene nanocomposites.76,77

Having identified two different microstructures on each side of r_c, we now determine in detail their respective linear...
viscoelastic properties, namely, their linear viscoelastic spectrum and the impact of the CB content.

Polymer-Dominated Regime ($r > r_c$). We first characterize the gel linear viscoelastic properties by determining its viscoelastic spectrum over three decades of frequencies ω. Figure 6a–c shows the viscoelastic spectrum for $x_{CB} = 6$, 8, and 10% wt. at a fixed CMC concentration $c_{CMC} = 2\%$. These three viscoelastic spectra all display a finite plateau modulus in the zero frequency limit, confirming that these mixtures behave as soft solids at rest. Moreover, for these three spectra, $G'(\omega)$ displays a power-law dependence, at least over two decades in frequency. Both behaviors are well captured by a fractional Kelvin–Voigt model, which consists of a spring of stiffness G_0 in parallel with a spring-pot element 8,39 characterized by a quasi-property Ψ (dimension Pa·s$^\delta$) and an exponent $0 < \alpha < 1$ [see inset in Figure 6a for a sketch of the mechanical model]. Such a fractional element, which was first introduced by Scott-Blair 30 to describe the power-law spectrum of protein gels, plays the same role as the CPE element used to describe the impedance spectra and gives rise to a constant mechanical phase with $\tan \delta = \alpha \pi/2$. The fractional Kelvin–Voigt model yields the following expression for the complex modulus:

$$G^\delta = G_0 + \Psi(\omega)\alpha$$

whose real and imaginary parts correspond to the red fits in Figure 6a–c determined simultaneously. This fit function relies only on two dimensional parameters, namely, the elastic modulus G_0 and the characteristic frequency defined as $\omega_\delta = (G_0/\Psi)^{1/\alpha}$. Remarkably, all spectra obtained by varying the carbon content between 6 and 15% wt. at fixed $c_{CMC} = 2\%$ can be described by varying G_0 and Ψ, while fixing $\alpha = 2/3$.

Such a robust description allows us to propose a universal master curve for the viscoelastic spectrum obtained at various CB contents, by using the following set of normalized coordinates: $G' = G'/G_0$, $G'' = G''/G_0$, and $\omega = \omega/\omega_0$ [Figure 6d]. This master curve is, in turn, well described over 8 orders of magnitude of reduced frequency by the fractional Kelvin–Voigt model pictured as red lines in Figure 6d. The power-law dependence of both G' and G'' with an exponent $2/3$ in the high-frequency limit is in remarkable agreement with the value computed by Zimm for dense polymer suspensions and polymer solids taking into account Brownian motion and hydrodynamic interactions.91,92 This observation strongly suggests that CB particles contribute mainly to the low-frequency part ($\omega \ll 1$) of the viscoelastic spectrum, whereas the CMC entangled network dominates the
high-frequency response ($\omega \gg 1$). This result, together with the fact that CB–CMC hydrogels are not electrically conductive for $r > r_d$, provides robust evidence that, in the regime $r > r_d$, the gel microstructure consists of a CMC viscoelastic matrix in which CB particles are dispersed without forming a percolated network, while serving as cross-linkers.

Finally, note that the master curve is robust and holds for different CMC concentrations, as illustrated in Figure S7.

We now discuss the dependence of the plateau modulus G_0 that characterizes the gel elasticity as a function of both the CB content and the CMC concentration. As reported in Figure 7, a power law of the CMC concentration, with an exponent $\chi = 2.4$. This scaling is strongly reminiscent of the concentration dependence predicted for the plateau modulus of entangled polymer solutions, for which an exponent $7/3 \approx 2.33$ was derived by Colby, Rubinstein, and Viovy. In the present case, for $r > r_d$, CMCs are indeed in an entangled regime, which is reported for $c_{\text{CMC}} > 0.16\%$ wt. This result further supports the idea that, for $r > r_d$, the elasticity of the CMC–CB hydrogel has two independent physical origins: a first contribution from the entangled CMC and a second one from the CB particles, which serve as cross-linkers and inhibit the long-time relaxation of the CMC matrix, leading to solid-like behavior at rest.

Colloid-Dominated Regime ($r < r_d$). Let us now consider the case $r < r_d$, where the CMC–CB hydrogel microstructure is formed by a space-spanning network of CB particles decorated with CMC polymers [see Figure 5a]. The viscoelastic spectra of two representative gels containing $c_{\text{CMC}} = 10^{-2} \%$ and $x_{\text{CB}} = 6$ and 8% wt., respectively, are illustrated in Figure 8a,b. For both gels, G' is merely frequency independent, whereas G'' decreases with increasing frequency and shows a flattening or even a slight upturn in the high-frequency limit [see Figure 8a], which is the signature of the solvent viscosity and Brownian motion of the CB particles. Such a frequency spectrum, along with the logarithmic aging dynamics reported in Figure S1a–c, shows that CMC–CB hydrogels display a glassy-like behavior for $r < r_d$, similar to that reported for jammed assemblies of soft particles or fractal colloidal gels. Therefore, we fit the viscoelastic spectrum reported in Figure 8a,b using a modified version of the Soft Glassy Rheology (SGR) model, which is well-known to capture such a behavior and reads:

\[
G' = G_0 (1 - (\omega \tau)^{-1}) + \omega^{1/2} \eta_\infty \omega
\]

(3)

\[
G'' = G_0 (\omega \tau)^{-1} + \omega^{1/2} + \eta_\infty \omega
\]

(4)

where x corresponds to a mean-field noise temperature, τ denotes the effective sample age, and the terms $\omega^{1/2}$ and $\eta_\infty \omega$ account, respectively, for Brownian motion and for the solvent viscous contribution. The data are fitted using eqs 3 and 4 with G_0, x, and τ as free parameters. The parameter $\tau = 1200$ s is the time elapsed since the end of the rejuvenation step and $\eta_\infty = 2 \times 10^{-3}$ Pa·s is the viscosity of the CMC solution at $c_{\text{CMC}} = 0.01\%$, measured independently with an Ubbelohde viscosimeter. Fitting our experimental data for samples prepared with a CB content ranging between 2\% and 12\%

![Figure 8](https://pubs.acs.org/acs/macromol.2c02068/fig/fig8.png)

Figure 8. Viscoelastic spectrum in the colloid-dominated regime. Frequency dependence of the elastic and viscous moduli, G' and G'', respectively, of CMC–CB hydrogels with two different CB contents (a) $x_{\text{CB}} = 6\%$ and (b) 8% wt. and a fixed amount of CMC polymer, i.e., $c_{\text{CMC}} = 0.01\%$ wt. The red curves are the best fits of the data to a modified SGR model [see eqs 3 and 4] with $\tau = 1200$ s, $\eta_\infty = 0.50$, and $\tau = 1.4$ Pa·s$^{-1/2}$ in (a) and $\tau = 1200$ s, $\eta_\infty = 0.53$, $\tau = 41$ Pa·s$^{-1/2}$ in (b). (c) Fit parameter x, which is constant $x = 0.5 \pm 0.1$, irrespective of the CB content as shown by the dashed line. (d) Fit parameter G'_0, which increases as a power law of x_{CB} with an exponent 4.7 ± 0.7.
yields a constant effective temperature, \(x \approx 0.5 < 1 \) [Figure 8c], that is characteristic of a yield stress fluid,\(^{101}\) and a reference modulus \(\mathcal{G}_0 \) that grows as a power law of the CB weight fraction, with an exponent 4.7 [Figure 8d]. First, the latter value is much larger than 1.8, which allows us to rule out a microstructure involving polymer-bridged nanoparticles.\(^{104,105}\) Second, the exponent 4.7 is consistent with that reported for CB gels in aprotic solvents, e.g., mineral oils, in which the elasticity also originates from a percolated network of CB particles,\(^{24,39}\) as well as in depletion gels.\(^{106}\) Similarly, the Brownian parameter \(\varepsilon \) follows a power law of the CB content as shown in Figure 88.

Varying the polymer concentration as well as the CB content, we observe that the gel reference modulus falls onto a master curve when plotted as a function of \((r_c - r)^\xi x_{\text{CB}}^\beta \), as illustrated in Figure 9 with \(\xi = 3.8 \) and \(\beta = 8.2 \). This expression accounts for the scalings displayed in Figure 4a and for the fact that, as \(r \rightarrow r_c \), the elastic properties vanish, for the CB particles and clusters become isolated in the CMC matrix. Note, as detailed in the Supporting Information, that these exponents are fully consistent with the power-law dependence of \(\mathcal{G}_0 \) found in Figure 8.

Finally, CMC–CB hydrogels in the colloid-dominated regime (i.e., \(r < r_c \)) are electrically conductive [Figure 4b]. In Figure 10, we compare their mechanical and electrical properties and observe that the electrical conductivity \(\sigma_{\text{CB}} \) conferred upon the sample by the percolated network of CB particles increases as a power law of the reference modulus \(\mathcal{G}_0 \) with an exponent of about 0.6. Note that a compatible exponent of 0.6 was robustly observed with the same type of CB particles dispersed in mineral oil at various weight fractions in the absence of any dispersant and for various shear histories.\(^{13} \) This comparison strongly suggests that, for \(r < r_c \), CMC only serves to stabilize the CB network in water, without affecting the link between the mechanical and electrical properties, at least for \(r \ll r_c \). Yet, one should emphasize that CMC–CB hydrogels display much lower conductivity values ranging between \(10^{-7} \) and \(10^{-2} \) mS/cm, compared to that measured for CB in mineral oil (between \(10^{-2} \) and 2 mS/cm), at similar weight fractions. This discrepancy most likely results from the coating of the CB particles by the CMC, which lowers the conductivity.

DISCUSSION AND CONCLUSION

By performing a fundamental and extensive study of aqueous dispersions of cellulose gum and carbon black soot particles, we have identified the range of polymer and particle contents for which the mixture forms hydrogels. These soft solids show two strikingly different microstructures and mechanical responses depending on the ratio \(r \) that quantifies the relative content of polymers and CB particles.

For \(r \ll r_c \), i.e., relatively low CMC concentrations, the gel elasticity is governed by the CB particles, which form a space-spanning network. Such a particulate network, which is responsible for the conductive properties of the hydrogel, is decorated and thus stabilized by the CMC. In this regime, the viscoelastic properties of the CMC–CB hydrogel, which are well-described by the SGR model, display weakly aging properties, which might be due to the slow reorganization of the particulate network.

In contrast, for \(r \gg r_c \), i.e., relatively high CMC concentrations, the gel elasticity originates from two independent contributions, namely, the entangled CMC matrix on the one hand and the CB particles on the other hand. In this regime, CB particles are dispersed inside the CMC matrix, where they act as cross-linkers through hydrophobic interactions. As a consequence, the sample is not electronically conductive. Moreover, the viscoelastic spectra of these CMC–CB hydrogels are frequency dependent and can be rescaled onto a master curve, which is very-well described by a fractional Kelvin–Voigt model with an exponent \(\alpha = 2/3 \) that characterizes the high-frequency viscoelastic response.

Interestingly, a similar master curve was reported for CMC–polydisperse silica hydrogels.\(^{107}\) Although the impact of the CMC concentration was not determined, the scaling factor \(G_0 \) was reported to increase as a power law of the silica content with an exponent 3.15 compatible with the value \(\xi = 3.0 \pm 0.5 \) reported in Figure 7. This comparison suggests that the nature and specific properties of the suspended nanoparticles, e.g., shape and size, have little or no influence on this exponent, which is mainly controlled by CMC. Moreover, the viscoelastic

Figure 9. Scaling of the elastic modulus in the colloid-dominated regime. Elastic modulus \(\mathcal{G}_0 \) vs \((r_c - r)^\xi x_{\text{CB}}^\beta \) for \(r < r_c \) where \(r_c = 0.037, \xi = 3.8 \pm 0.5 \), and \(\beta = 8.2 \pm 0.6 \) (consistent with Figure 4). Color levels code for the CB content ranging between 2% and 10%. The red line shows the best linear fit of the data.

Figure 10. Electrical conductivity of the CB network \(\sigma_{\text{CB}} \) vs the elastic modulus \(G_0 \). The colors indicate the values of \(x_{\text{CB}} \) using the same scale as in Figure 9. The red line is the best power-law fit with an exponent 0.6 ± 0.2. Inset: \(\sigma_{\text{CB}} \) vs \(x_{\text{CB}} \). The red line is the best power-law fit with an exponent 2.8 ± 0.4.
spectrum of CMC—silica hydrogels show a power law in the high-frequency limit, with an exponent 0.56 that is compatible with the Zimm scaling $\alpha = 2/3$ reported in the present work. Note that this exponent is not universal and depends on the polymer—solvent interaction. For instance, the viscoelastic spectrum of polyacrylamide—silica hydrogels obtained for various contents in silica particles108 can also be rescaled onto a master curve that shows a high-frequency response that is a power law with an exponent 0.74.

Our results pave the way for the rational design of CMC-based slurries in which CMC is used as a binder, e.g., for lithium-ion batteries67,109,110 and more generally for CMC-based hydrogels involving various types of fillers such as graphene oxide, metallic nanoparticles, etc.111–113 Future work shall include rheo-electric studies of the yielding transition and flow properties of CMC—CB hydrogels, so as to unveil the microscopic scenario underpinning their nonlinear properties.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.macromol.2c02068.

(i) Dynamic recovery of various CMC—CB hydrogels following flow cessation; (ii) calibration of the conductivity cell; (iii) impact of the CMC concentration on the parameters of the electrical model; (iv) phase diagrams based on the elastic and viscous modulus; (v) scaling of the elastic modulus with the CMC concentration for $r < r_c$; (vi) master curve for the hydrogel viscoelastic spectra for different CMC and CB contents; (vii) dependence on the CB content of the parameter c from the modified SGR model (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Thibaut Divoux — ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France; orcid.org/0000-0002-6777-5084; Email: Thibaut.Divoux@ens-lyon.fr

Authors
Gauthier Legrand — ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France
Sébastien Manneville — ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France; Institut Universitaire de France (IUF), F-69342 Lyon, France
Gareth H. McKinley — Hatsepsuto Microfluids Laboratory, Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0001-8323-2779

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.macromol.2c02068

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank R. Backov for suggesting the use of CMC as a dispersant, R. Asmi for preliminary experiments, and C. Bucher and V. Andrieux for insightful discussions on the electrochemical properties of conductive fluids. We also thank G. Baiza for his careful reading of the manuscript and acknowledge fruitful discussions with T. Gibaud, A. Helal, K. Ioannisidou, R. J.-M. Pellenc, and M. Peyla.

■ REFERENCES

(64) Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J. Power Sources 2010, 195, 2835–2843.

(64) Guerfi, A.; Kaneko, M.; Petitclerc, M.; Morii, M.; Zaghb, K. LiFePO4 water-soluble binder electrode for Li-ion batteries. *J. Power Sources* **2007**, *163*, 1047−1052.

